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SUMMARY
The plant funiculus anchors the developing seed to the placenta within the inner dorsal pod strands of the
silique wall and directly transports nutrients to the seeds. The lignified vasculature critically supports nutrient
transport through the funiculus. However, molecular mechanisms underlying lignified secondary cell wall
(SCW) biosynthesis in the funiculus remain elusive. Here, we show that the transcription factor ZINC
FINGER PROTEIN2 (ZFP2) represses SCW formation in the cortex cells that surround the vasculature. This
function is essential for efficient nutrient loading into the seeds. Notably, ZFP2 directly acts on the SCW tran-
scription factorNAC SECONDARYWALL THICKENING PROMOTING FACTOR1 (NST1) to repress cortex cell
lignification, providing amechanism of how SCWbiosynthesis is restricted to the vasculature of the funiculus
to ensure proper seed loading in Arabidopsis.
INTRODUCTION

Seeds are sophisticated structures that allowed seed plants to

dominate terrestrial environments and serve as essential cor-

nerstones of our global food supply.1 Seed germination and

subsequent seedling establishment require efficient mobiliza-

tion of storage reserves to the seeds until the seedlings may

support growth through photosynthesis.2,3 Sufficient loading

of the reserves poses significant challenges for plants but is

a key driver of agronomic traits. Hence, plant breeders have

invested considerable efforts in enhancing seed loading effi-

ciency,3–5 and several aspects of seed anatomy and physi-

ology have been extensively investigated. These studies

have clarified that the storage reserves typically constitute

carbohydrates, oils, and proteins that predominantly are syn-

thesized during the seed-filling phase.5–8 The developing

seeds rely on imported molecules, including sucrose, amino

acids, and defense compounds (e.g., glucosinolates), to build

the reserves and to fuel growth, particularly during maturation,

and to protect plants after germination.9 These molecules or
Dev
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their precursors are transported from the maternal plant

through the vascular tissues within the funiculus, ultimately

reaching the seed coat, which distributes them to various

seed compartments.3,10–12 This sophisticated network of

transportation underscores the critical role of the funiculus in

seed development.

The funiculus serves as a critical anchor, connecting the devel-

oping seed to the placenta within the inner dorsal pod strands of

the silique wall, and acts as the sole pathway between the silique

septum and the seed for nutrient transport during seed develop-

ment.3,12–14 The funiculus is therefore considered an integral

component of the plant vasculature.9 A recent study showed

that the funiculi in Arabidopsis are a major source of seed-bound

glucosinolates,9 which are primary defense compounds, in addi-

tion to their role in nutrient and photoassimilate transport. In Ara-

bidopsis, glucosinolates encompass mainly tryptophan-derived

indole glucosinolates and methionine-derived aliphatic glucosi-

nolates, which are further divided into short-chained aliphatic

glucosinolates (with three to five methylene groups, C3–C5)

and long-chained aliphatic glucosinolates (with six to eight
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methylene groups, C6–C8). Structural alterations to the funiculus

occur in concert with seed development and are essential for the

seed to grow.3,10,12–14 During the transition from the ovule to the

globular stage of seed development, the vascular strand, partic-

ularly the phloem, undergoes significant expansion by increasing

the number of vascular cells, thereby enhancing metabolite

transport to the seed.14

Plant cells are encased by cell walls, with expanding cells typi-

cally surrounded by thin primary walls that are composed of

cellulose, hemicelluloses, and pectins.15–18 The deposition of

secondary cell walls (SCWs) in specialized cells such as the

vascular tracheary elements occurs in concert with the cessation

of cell expansion in certain cell types. SCWs are then formed in-

side of the primary walls and support mechanical strength, long-

distance water and nutrient transport, resistance to biotic stress,

fruit dehiscence, and pollen release.15,19–22 SCWs primarily

consist of cellulose, lignin, and hemicelluloses15,20,21,23 with a

corresponding set of biosynthetic genes with highly controlled

expression patterns. These genes are controlled by a hierarchi-

cal network of transcriptional regulators.16,21,22,24 Positioned at

the top of this network are a group of closely related NAC-

domain transcription factors (TFs). These SCW-associated

NACs control an array of downstream TFs, notably MYB TFs,

which subsequently control the expression of the SCW biosyn-

thetic genes.16,20,22While much of this transcriptional framework

is well characterized, regulatory aspects of the initiation and con-

trol of the upstream NAC regulators, also referred to as SCW

master regulators, remain incomplete.

Zinc finger protein TFs are pivotal regulators, governing

various cellular functions, such as transcription, translation,

apoptosis, and protein-protein interactions.25,26 Classified by

the arrangement of histidine and cysteine residues, vital for the

binding of zinc ions within the finger’s secondary structure,

zinc finger proteins fall into different groups, including C2HC,

C2C2, C2H2, C2HCC2C2, and C2C2C2C2.26,27 TheArabidopsis

genome encodes 176 C2H2-type zinc finger proteins, among

which 33 members are conserved across many eukaryotes,

while the remaining 143 members appear to be specific to the

plant kingdom.27 C2H2 zinc finger proteins control a myriad of

biological processes in plants, such as trichome growth and

development,28–31 shoot and flower development,31–37 root

hair development,38,39 stress responses,39–42 and hormone

signal transduction pathways.29,30,32,37,39,43,44 Here, we show

that ZINC FINGER PROTEIN2 (ZFP2) represses SCW produc-

tion in the funiculus by directly acting on the SCW master regu-

lator NAC SECONDARY WALL THICKENING PROMOTING

FACTOR1 (NST1). This suppression precisely controls SCWsyn-

thesis in the funiculus to maintain effective seed loading.

RESULTS

ZFP2 is necessary for seed and silique development in
Arabidopsis

To explore possible regulators of seed development, we

screened transfer DNA (T-DNA) lines of TFs that are expressed

in the siliques based on publicly available microarray and RNA

sequencing (RNA-seq) experiments.45–47 Interestingly, we found

that three independent T-DNA lines (zfp2-1, zfp2-2, and zfp2-3;

Figures 1A and 1B), corresponding to the C2H2-type ZFP2, dis-
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played altered silique shape and reduced seed size (Figures 1C

and 1D). We verified the absence of ZFP2 transcript in the three

lines by reverse transcription PCR (RT-PCR) (Figure 1B). The

zfp2mutants also displayed shorter siliques (Figure 1E), reduced

seed weight (Figure 1F), as well as decreased seed area, perim-

eter, length, and width compared with wild type (WT) (Figure 1G).

However, the seed number per silique betweenWT and zfp2s re-

mained the same (Figure S1A).

To assess the seed content, we next analyzed various seed

traits of zfp2. As shown in Figures 1H and S1B, seed oil accumu-

lation from 11 to 19 days after pollination (DAP) was reduced in

zfp2-2 developing seeds compared with WT. Notably, the

seed-bound long-chained aliphatic glucosinolate levels in

mature seeds were reduced by 50% in zfp2-1 and by more

than 70% in zfp2-2 and zfp2-3 (Figure 1I), while the levels of

the other seed-bound glucosinolates were not affected. Glucosi-

nolate content and profile in the rest of the silique (i.e., silique

walls, replum, septum, and funiculi) were not affected in zfp2mu-

tants (Figure S1C). These data suggest a role of ZFP2 in loading

seed-bound metabolites and in the development of plant fruits

and seeds.

ZFP2 is highly expressed in the non-seed tissues of
Arabidopsis siliques
To outline a detailed map of the ZFP2 expression, we first carried

out quantitative real-time PCR (qRT-PCR) across various Arabi-

dopsis tissues. While ZFP2 was modestly expressed in stems

and flowers, the highest expression was in the siliques (Fig-

ure 2A). We further dissected temporal ZFP2 expression in

developing siliques and observed that ZFP2 was predominantly

expressed in silique valves, as well as non-seed tissue inside the

siliques, compared with developing seeds (Figure 2B). We next

generated reporter Arabidopsis lines expressing b-Glucuroni-

dase (GUS) driven by the native ZFP2 promoter (proZFP2:GUS)

to further detail the expression profile of ZFP2 in siliques. Histo-

chemical staining indicated that ZFP2 was expressed in valves

during the silique development (Figure 2C), corroborating our

qRT-PCR results (Figure 2B). In addition, GUS signal was evident

in non-seed tissues inside the siliques, such as funiculus and re-

plum (Figure 2D). These data were corroborated by expression

data from the funiculus and other seed regions across seed

development12 (Figure S2A). ZFP2 is thus highly expressed in

non-seed tissues of developing siliques in Arabidopsis.

As a TF, ZFP2 is expected to act in the nucleus. To corroborate

this, we transiently expressed a YFP-ZFP2 fusion construct in

Nicotiana benthamiana leaves, followed by confocal microscopy

imaging. Our results show that YFP-ZFP2 was localized in the

nucleus (Figure S2B). In addition, we transformed the zfp2-2

mutant with a construct expressing FLAG-ZFP2-YFP driven by

proZFP2 (proZFP2:FLAG-ZFP2-YFP) and found that the trans-

gene complemented the shape-altered phenotype of zfp2-2

(Figure S2C). Confocal microscopy showed the presence of

FLAG-ZFP2-YFP in the nucleus of funiculus cells (Figure S2B).

Loss of function of ZFP2 leads to ectopic, fiber-like SCW
formation in funiculi
The disrupted accumulation of long-chained glucosinolates in

zfp2 mutants next led us to the funiculus, which functions as a

cell factory for the synthesis of seed-bound glucosinolates.9,48
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Figure 1. Analyses of silique and seed phenotypes of WT and ZFP2 loss of function mutants

(A) Schematic diagram of T-DNA insertions in the zfp2 mutants.

(B) ZFP2 transcript accumulation in the three zfp2 mutants was analyzed by reverse transcription PCR (RT-PCR). ACTIN2 (ACT2) was used as a control.

(C) Appearance of siliques of WT and zfp2 mutants at 7 DAP. Scale bar indicates 3 mm.

(D) Appearance of WT and zfp2s seeds. Scale bar indicates 100 mm.

(E) Silique length of WT and zfp2 mutants at 7 DAP. n = 28–33 siliques.

(F) Seed weight of WT and zfp2 mutants was measured using 100 seeds per plant. n = 4.

(G) Seed area, perimeter, length, and width of WT and zfp2 mutants. n = 100–120 seeds.

(H) Total seed oil content in WT and zfp2 mutants. n = 4.

(I) Aliphatic long-chain glucosinolate content per seed, measured from pools of 10 seeds from one silique per plant. n = 14 plants. Horizontal lines indicate the

group median. Different letters indicate statistically significant differences between genotypes according to a one-way ANOVA followed by a Tukey-HSD test

(a = 0.05).
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As ZFP2 was highly expressed in the funiculus, we next investi-

gatedwhether ZFP2 contributes to the development of the funic-

ulus by examining phenotypical consequences of ZFP2 muta-

tions in funiculi. We first collected siliques at the late stage

17,49 11–12 DAP. At this stage, silique differentiation and elonga-

tion are completed, and seed loading is ongoing. In WT funiculi,

we observed lignified SCWs only in xylem tracheary elements in

the center of the funiculus, and occasionally at the very tip of the

funiculus, where the separation layer for seed dehiscence

forms50 (Figure 3A). By contrast, in zfp2 mutants, we observed

a centripetal spread of ectopic, lignified SCWs (eSCWs) in cortex

cells, particularly in the first to third cell layer, along the whole

length of the funiculus. Lignin accumulation in eSCWs was

further confirmed using the Wiesner test, which specifically

stains lignin coniferaldehyde residues (Figure S3A). These

eSCWs were clearly differentiated from lignified primary cell

walls, a common stress response, by the substantial accumula-

tion of additional cellulose to form bona fide SCWs (Figure 3A).

The eSCWs were deposited evenly, setting them apart from

the annular or spiral patterning of xylem tracheary elements in

funiculi. Their morphology was therefore more similar to fiber

SCWs, which are not formed in WT funiculi at this growth stage

(Figure 3A). The densities of the eSCWs were intermediate in

zfp2-1 but highest in zfp2-2 and zfp2-3 (Figure 3B), consistent
with observed decreases in seed weight and glucosinolate

levels. These eSCWs completely surrounded the xylem, likely

interfering with biosynthesis and transport of glucosinolates

within funiculi (Figure 1I). Additionally, the eSCWs also appeared

to limit cortex cell elongation in zfp2 funiculi (Figures 3C and 3D).

The reduction in funiculus length, together with a likely reduction

in flexibility, could perhaps explain why the seeds in zfp2 siliques

are not arranged into a flat lattice, potentially leading to the

observed crinkly silique phenotype (Figure 1C). In contrast to

the eSCW deposition in funiculus, we did not find evidence for

differential lignin accumulation in stems nor changed lignification

patterns in the silique valve and replum (Figure S3B).

ZFP2 negatively controls the expression of SCW
biosynthesis genes
To gain insights into the potential downstream target genes of

ZFP2, we analyzed the global expression profiles of zfp2-2 si-

liques using RNA-seq. The global transcriptomes of WT and

zfp2-2 showed significant differences as indicated by principal-

component analysis (PCA) (Figure S4A), with 324 genes being

differentially expressed in zfp2-2 compared with WT (Fig-

ure S4B). Among these, more than half (56.5%) were upregu-

lated in zfp2-2. Gene Ontology (GO) enrichment analysis sug-

gested that many of the upregulated genes were involved in
Developmental Cell 60, 1–11, June 23, 2025 3
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Figure 2. Expression analysis of ZFP2 in Arabidopsis

(A) ZFP2 transcript accumulation in different tissues of WT Arabidopsis was measured by quantitative real-time PCR (qRT-PCR). n = 3.

(B) ZFP2 transcripts in silique valves, seeds, and remaining tissues such as replum and funiculus (rest) inWT at 5, 7, 9, 11, and 13 days after pollination (DAP) were

determined by qRT-PCR. n = 3. Bar height indicates the group median.

(C) GUS staining in siliques of a representative proZFP2:GUS transgenic line showing ZFP2 expression in valves of developing siliques at 5, 7, and 11 DAP.

(D) GUS staining in 13 DAP siliques of a representative proZFP2:GUS transgenic line after removal of valves, showing ZFP2 expression in replum and funiculus.
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SCWbiosynthesis (Figures S4B and S4C). Considering the fiber-

like architecture of the eSCWs in the zfp2 funiculi, the upregula-

tion of the fiber-specific SCW transcriptional regulator NST1

warranted special attention51–53 (Figures S4B and S4C). We

therefore examined the expression of NST1 and several other

SCW-related genes, namely SND2,54 MYB63,55 LAC12,56

LAC17,56 IRX9,57 IRX15,58 and PRX52,59 using qRT-PCR and

confirmed that they were indeed upregulated in zfp2-2

compared with WT (Figure 4A). Similar results were obtained

when we assessed the expression of SCW-related genes in

siliques of zfp2-1 (Figure S4D). We generated a zfp2-2 nst1-1

double mutant and found that the increased expression of

SCW-related genes in zfp2-2 was significantly reduced in zfp2-

2 nst1-1 (Figure 4A). In addition, we examined the expression

of several genes involved in fruit development and observed

no significant difference between WT and zfp2-2 (Figure S4E).

These results suggest that ZFP2 plays a role in negatively regu-

lating fiber-specific SCW gene expression in siliques.

ZFP2 functions as a transcriptional repressor of SCW
biosynthesis
To investigate whether ZFP2 controls fiber-specific SCW genes

directly through NST1, we examined transactivation activity of

ZFP2 using a dual-luciferase (LUC) assay in a N. benthamiana
4 Developmental Cell 60, 1–11, June 23, 2025
transient expression system.60–62 The ZFP2 was driven by the

CaMV 35S promoter, and the LUC reporter gene was driven by

the NST1 promoter (proNST1) (Figure 4B). Our results showed

a substantial reduction of LUC activity (Figure 4C), suggesting

that ZFP2 repressed the activity of proNST1 in plant cells. We

also assessed ZFP2 effect on the promoter activities of two other

SCW-related regulators, SND2 and MYB63 (proSND2 and pro-

MYB63), using the dual-LUC assay (Figure S5A). As shown in

Figure S5B, ZFP2 significantly repressed the LUC activity for

SND2, but not MYB63. To confirm that ZFP2 represses NST1

in planta, we generated a proNST1:GUS reporter line (in WT

background) and crossed it into the zfp2-2 mutant background.

Corroborating the above results, GUS signal in funiculi was dras-

tically increased upon loss of ZFP2 (Figure S5C).

C2H2-type zinc finger proteins whose amino acid sequences

are similar to ZFP2 can be divided into four subgroups, in which

ZFP2 (subgroup I) is distinct from GLABROUS INFLORES-

CENCE STEMS (GIS) family members (subgroup IV) (Fig-

ure S5D). In silico analysis showed that ZFP2 harbored one

typical C2H2-type zinc finger domain (containing the conserved

QALGGH sequence26) and one low-complexity region (LCR)

(Figure S5E). Moreover, we found that ZFP2 comprised three

putative LxLxL-type ethylene-responsive element binding fac-

tor-associated amphiphilic repression (EAR) motifs (Figure 4B),



A

DCB

Figure 3. Loss of ZFP2 leads to the ectopic formation of fiber-like lignified SCWs in funiculus

(A) Cellulose and lignin distribution in 11–12 DAP funiculus, as visualized by Calcofluor white and basic fuchsin staining, respectively. Longitudinal optical XY

cross-sections are projections of the 40 Z-slices surrounding the xylem (10 mm total). Dashed vertical lines indicate the position of the optical YZ-section shown

alongside. Blue arrowheads indicate the position of xylem TEs, and red arrowheads indicate cells with eSCWs. Insets highlight the difference between the

patterned SCWs of tracheary elements and the uniform thickenings of the fiber-like eSCWs in cortex cells.

(B) Density of eSCWs in 11–12 DAP funiculi (n = 6 plants).

(C) Segmented funiculus cortex cells, colored by the diameter of their long axis.

(D) Cortex cell length in 11–12 DAP funiculi. Dots represent median cell length per replicate (n = 6 plants). Violin plots show the distribution of individual cor-

tex cells.

Bars and horizontal lines indicate the groupmedian. Different letters indicate statistically significant differences between genotypes according to a Kruskal-Wallis

test followed by Dunn’s test, Holm-adjusted for multiple comparisons (B; a = 0.05), or a one-way ANOVA followed by a Tukey-HSD test (D; a = 0.05).
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which potentially function as repression motifs.63–66 Two EAR

motifs (EAR1 and EAR2) are close to the N terminus, and the

third EAR motif is in the C-terminal region of ZFP2 (Figure 4B).

Deletion of the C-terminal EAR3 (ZFP21–143) or mutation of

EAR3 (L to A substitution; designated as ZFP2 mEAR3) resulted

in reduced repression activity of ZFP2 (Figure 4C). Further dele-

tion of the N-terminal EAR1 and EAR2 (ZFP228–143) or mutation

of EAR1 and EAR2 (designated as ZFP2 mEAR1-3) led to a

further reduced repression activity of ZFP2 (Figure 4C). Hence,

ZFP2 acts as a transcriptional repressor to control SCW biosyn-

thetic genes through several EAR motifs.

NST1 is a direct target gene of ZFP2
To assess how ZFP2 represses NST1 expression, we next

generated a chimeric ZFP2 protein (ZFP2-VP16) by fusing

ZFP2 with the VP16 transcriptional activator domain.67 Using

this construct, we carried out dual-LUC transient expression

assay to assess transactivation of ZFP2-VP16 on proNST1 in

N. benthamiana leaves (Figure S5F). As shown in Figure S5G,

the ZFP2-VP16 was significantly less effective in suppressing

proNST1 as comparedwith ZFP2.Most plant zinc finger proteins
harbor a conserved QALGGH motif within their zinc finger heli-

ces, which is missing in animals and yeast.26 This motif plays a

vital role in DNA binding affinity in plants.26,68 To test this for

ZFP2, we mutated the ZFP2 (ZFP2L67H/G69V) by substituting

leucine 67 (L67) and glycine 69 (G69) residues to histidine

(H67) and valine (V69), respectively, and examined the effects

on transactivation of proNST1 (Figure S5H). Our result indicated

that the ZFP2L67H/G69V was substantially less effective in repres-

sing proNST1 compared with the native form of ZFP2 (Fig-

ure S5I). These results imply that ZFP2 represses NST1 expres-

sion via direct binding to proNST1.

To test whether ZFP2 is directly associated with the NST1 lo-

cus, we next carried out chromatin immunoprecipitation (ChIP)

assay using siliques of proZFP2:FLAG-ZFP2-YFP/zfp2-2 plants.

ChIP assay indicated that ZFP2 was strongly associated in a re-

gion upstream of the transcription start site (P6 fragment;

Figures 5A and 5B), as well as the P2 fragment (Figures 5A and

5B), of the NST1 promoter. Our ChIP result was further verified

by electrophoretic mobility shift assay (EMSA). We designed

four biotin-labeled DNA probes (probe P6-1 to P6-4) within P6

fragment that possessed ZFP2 binding elements (Figure 5C).
Developmental Cell 60, 1–11, June 23, 2025 5
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Figure 4. ZFP2 functions as a transcrip-

tional repressor

(A) Expression levels of genes involved in SCW

formation in siliques as analyzed by qRT-PCR. n =

6–12 samples from 2 to 4 growth instances. Bars

indicate the group median. Values are shown on a

pseudo-log scale. Different letters indicate statis-

tically significant differences between genotypes

according to a one-way ANOVA followed by a

Tukey-HSD test (a = 0.05).

(B) Schematic representation of the constructs

and site-directed mutations used in the dual-

luciferase (dual-LUC) assay in N. benthamiana

leaves through transient expression.

(C) Transactivation of the LUC reporter by the

different ZFP2 constructs in N. benthamiana

leaves infiltrated either with the reporter alone or in

combination with the effector. Renilla (REN) LUC

was used as an internal control. n = 4–6 replicates.

Bars indicate the group median. Different letters

indicate statistically significant differences be-

tween constructs according to a Kruskal-Wallis

test followed by Dunn’s test, Holm-adjusted for

multiple comparisons (a = 0.05).
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EMSA, using purified recombinant GST-His-ZFP2, indicated that

ZFP2 protein could bind to the designedDNAprobes (Figure 5C).

As we progressively increased the unlabeled probe (103 to 803

of the cold probe) in the reaction mixture, we observed gradual

disappearance of the labeling signal, indicating a high binding

specificity of GST-His-ZFP2 to the labeled probes (Figure 5C).

Collectively, our results show that NST1 is a direct target

of ZFP2.

DISCUSSION

We outline that ZFP2 works as a key transcriptional regulator

of SCW biosynthesis in funiculi and show that this function is

required for the accumulation of seed-bound metabolites.

ZFPs primarily control plant developmental processes and

phytohormone signaling.26,28,29,31,32,36,38,43 The involvement

of ZFP2 in lignification, particularly as a previously uncharac-

terized transcriptional repressor in fruit tissues (such as

funiculi), identifies a new research direction for the ZFP TF

family.

ZFP2 is a C2H2-type zinc finger protein with three EAR motifs

in its N and C terminus that confer the repression activity of

ZFP2. Similarly, some other C2H2 zinc finger proteins also act

as transcriptional repressors, such as KNUCKLES (KNU) and

ZP1.37,38,69 The repression activity in these TFs was primarily

controlled via the interaction of their EAR motifs with TOPLESS

(TPL), a transcriptional co-repressor that recruits histone deace-

tylase to change chromatin structure.66,70,71 Additionally, a

wealth of information indicates that these repressors function

by interacting with the polycomb group (PcG) proteins. For
6 Developmental Cell 60, 1–11, June 23, 2025
instance, SUPERMAN (SUP) represses

the auxin biosynthesis genes by recruit-

ing PcG complex, hence fine-tuning local

auxin signaling to control floral meristem

determinacy.37 KNU recruits PcG to
downregulateWUSCHEL (WUS), an essential gene in floral mer-

istem determinacy.69 Hence, it is plausible that also the EARmo-

tifs of ZFP2 recruit histone deacetylases and/or PcG proteins to

control transcriptional repression of SCW biosynthesis. Protein

sequence alignment analysis of ZFP2 showed that EARs were

conserved across ZFP2 from diverse plant species, including

monocots and dicots (Figure S5E), suggesting a conserved mo-

lecular mechanism of gene regulation.

During the past two decades, a wealth of studies has demon-

strated the gene regulatory network underlying SCW formation

but primarily in vascular tissues of stems and roots.15,16,18

NST1 is a fiber-specific master regulator that initiates SCW

formation by activating various SCW-related genes.15,16,18

Nevertheless, there is limited information about transcriptional

fine-tuning of NST1 and its homologs, i.e., the VASCULAR-

RELATED NAC-DOMAIN (VND) clade of NAC TFs. A previous

study showed that MYC2/MYC4 can activate NST1 expression

via direct binding to its promoter, thus promoting SCW thick-

ening in stems.52 Another study showed that WRKY12 directly

bound to the promoter of the NST1-homolog, NST2, and

repressed its expression, leading to reduced SCW formation,

again in Arabidopsis stems.72 Interestingly, the WRKY12 sup-

pressed SCW formation in the cortex cells of the stems, similarly

to what we observed for ZFP2 in the funiculus. The analogous

functions of WRKY12 and ZFP2 may assure that cortex cells of

the stem and funiculus maintain their biological function.

WRKY12, and potentially other suppressors, with partially

redundant functions in stems and other tissues might also be

the reason that stem lignification remained unchanged in zfp2

plants. Indeed, in zfp2 mutants, increased expression of genes



Figure 5. NST1 is a direct target of ZFP2

(A) Schematic diagram of proNST1. The first nucleotide of the translation start codon is assigned the +1 position. The 50 untranslated region is indicated by white

box. P1 to P8 are shown as the regions used for chromatin immunoprecipitation (ChIP) assays.

(B) ChIP assay using siliques of proZFP2:FLAG-ZFP2-YFP in zfp2-2. TA3 retrotransposon (TA3) is used as the negative control locus, and the values of TA3

were calibrated to 1. The y axis shows relative enrichment fold by comparing with no antibody control. The bar height represents the group median of three

technical replicates. The asterisks indicate significant differences between TA3 and different primer sets on proNST1 (***p < 0.001, **p < 0.01, *p < 0.05, one-

way ANOVA).

(C) Four DNA probes (covering the P6 region in the ChIP assay) were designed for electrophoretic mobility shift assay (EMSA) to investigate their interaction with

purified GST-His-ZFP2. Binding of GST-His-ZFP2 to probe P6-1 to P6-4, respectively. Probes were labeled with biotin. Unlabeled probes (cold probes) were

added with an increasing amount to compete with the biotin-labeled probes. The free probe and the shifted DNA-protein complex are indicated by arrowheads.
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involved in SCW biosynthesis leads to eSCW specifically in

funiculi, impeding the transport of metabolites to the seed.

Notably, some other TFs that influence SCW deposition in

funiculi, including HECATE3, SEEDSTICK, and ALCATRAZ,

have been identified, but the transcriptional context of these

TFs remains largely unexplored.50 Our work therefore substan-

tially advances the gene regulatory mechanism of SCWs and

NST1, particularly in fruit tissues. How other factors, such as

phytohormones and nutrients, contribute to the function of

ZFP2 in controlling SCW synthesis in funiculus will be the direc-

tion of future studies.

The funiculus, an umbilical cord-like structure, functions as a

crucial anchor that links the developing seeds to the maternal

plant.12,73 Additionally, it is the sole pathway for direct transport

of nutrients during seed development. The development of the

funiculus is a dynamic process closely connected with seed

growth.3,12 The fact that the funiculus remains alive and intact

throughout seed maturation in Arabidopsis suggests the contri-

bution of all its tissue layers for seed development.12 Indeed,

recent discoveries indicate an important function of funiculus

in the biosynthesis and subsequent transport of glucosinolates

to the seeds.9,48 We found reduced glucosinolate contents in

zfp2s, furthering our understanding of nutrient routes from the

funiculus to the seed.
Limitations of the study
While ZFP2 controls SCW synthesis during funiculus develop-

ment, we cannot rule out that the TF also affects SCW synthesis

in other tissues of the developing fruit or seed, which could

contribute to aspects of the observed growth defects in the

zfp2 mutants. Additionally, a finer spatio-temporal decomposi-

tion of the relationship between eSCW formation in the funiculus

and seed loading deficits would likely help us better understand

which cell types contribute to the biosynthesis and transport of

glucosinolates and fatty acids or their precursors. ZFP2 directly

controls NST1 to repress SCW formation in the funiculus; how-

ever, how ZFP2 interacts with other key TFs regulating broader

fruit development, such as SHATTERPROOF or SEEDSTICK,

needs further study. Moreover, it will be interesting to see

whether orthologs of ZFP2 in other plants may play conserved

roles in delineating SCW formation at the interface of parenchy-

matic and vascular tissues.
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GST-6xHis-ZFP2 This paper N/A

Methanol R99.9% VWR Cat#85681.320

p-Hydroxybenzylglucosinolate potassium salt Extrasynthese Cat#2511S

DEAS-Sephadex A-25 Cytiva Cat#17017002

Sulfatase Type H-1 Sigma-Aldrich Cat#9626

Acetyl Bromide Sgima-Aldrich Cat#135968

Acetic Acid, glacial Merck Cat#1.00063

Sodium Hydroxide Sigma-Aldrich Cat#S5881

Hydroxylamine Hydrochloride Sigma-Aldrich Cat#431362

Xylitol Sigma-Aldrich Cat#W507930

Sodium deoxycholate Sigma-Aldrich Cat#D6750

Urea Sigma-Aldrich Cat#U5378

Basic fuchsin Merck CAS#632-99-5

Fluorescent Brightener 28 (Calcofluor White) ICN CAS#4404-43-7

Phloroglucinol Sigma-Aldrich Cat#P3502

Hydrochloric acid Supelco Cat#1.01834

Critical commercial assays

Dual-Luciferase� Reporter Assay System Promega Cat#E1910

Monarch� Total RNA Miniprep Kit New England Biolabs Cat#T2010S

LunaScript� RT SuperMix Kit New England Biolabs Cat#E3010

NEBNext� Ultra� II Directional RNA Library

Prep Kit for Illumina�
New England Biolabs Cat#E7760S

Luna� Universal qPCR Master Mix New England Biolabs Cat#M3003

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Monarch PCR & DNA cleanup kit New England Biolabs Cat#T1030L

Chemiluminescent Nucleic Acid Detection

Module Kit

ThermoFisher Scientific Cat#89880

Experimental Models: Organisms/Strains

Arabidopsis thaliana: zfp2-1 ABRC N/A

Arabidopsis thaliana: zfp2-2 ABRC N/A

Arabidopsis thaliana: zfp2-3 ABRC N/A

Arabidopsis thaliana: nst1-1 ABRC N/A

Arabidopsis thaliana: proZFP2:GUS in Col-0 This paper N/A

Arabidopsis thaliana: proZFP2:FLAG-ZFP2-

YFP in zfp2-2

This paper N/A

Arabidopsis thaliana: proNST1:GUS in Col-0 This paper N/A

Arabidopsis thaliana: proNST1:GUS in zfp2-2 This paper N/A

Nicotiana benthamiana: wild-type with

H2B-RFP

Zhang et al.74 N/A

Recombinant DNA

pGWB3:pZFP2 This paper N/A

pEarleyGate100:ZFP2 and its mutants This paper N/A

pEarleyGate100:ZFP2-VP16 This paper N/A

pEarleyGate100:proZFP2:FLAG-ZFP2-YFP This paper N/A

pGreenII 0800-LUC:proNST1 This paper N/A

pGreenII 0800-LUC:proMYB63 This paper N/A

pGreenII 0800-LUC:proSND2 This paper N/A

pNIC-GST:ZFP2 (GST-6xHis-ZFP2) This paper N/A

Oligonucleotides

Primers for plasmid construction (see Table S1) This paper N/A

Quantitative real-time PCR primers

(see Table S2)

This paper N/A

Chromatin-immunoprecipitation PCR primers

(see Table S3)

This paper N/A

Semi-quantitative reverse transcription-PCR

primers (see method)

This paper N/A

EMSA probes (see method) This paper N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/index.html

MEGA X Kumar et al.75 www.megasoftware.net

Simple Modular Architecture Research Tool

(SMART)

Letunic et al.76 https://smart.embl.de

CLUSTAL W Thompson et al.77 https://www.genome.jp/tools-bin/clustalw

R package DESeq2 Love et al.78 https://bioconductor.org/packages/release/

data/annotation/html/org.At.tair.db.html

PlantSeg (1.6.2) Wolny et al.79 https://github.com/kreshuklab/plant-seg

MorpholibJ (1.6.3) Legland et al.80 https://github.com/ijpb/MorphoLibJ

Napari (0.4.18) Ahlers et al.81 https://github.com/napari/napari

R package ‘tidyverse’ (2.0.0) Wickham et al.82 https://www.tidyverse.org

Deposited Data

R code and source data to reproduce

the figures

This paper https://doi.org/10.5281/zenodo.14342515
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Plant materials
Arabidopsis (Arabidopsis thaliana) WT (Columbia ecotype) was used in this study. Arabidopsis, Nicotiana benthamiana, and trans-

genic N. benthamiana expressing H2B-RFP74 plants were grown in a growth chamber at 23 oC with a photoperiod of 16 h light

(100–150 mmol m-2 sec-1 illumination)/8 h dark. Arabidopsis transformation, seed sterilization, plant growth, and selection of homo-

zygous transgenic lineswere performed as described previously.62,83 Seeds of zfp2-1 (SALK_006473), zfp2-2 (SALK_060453), zfp2-3

(SALK_007343), and nst1-1 (SALK_120377C) mutants were obtained from the Arabidopsis Biological Resource Center (ABRC). The

double mutant zfp2-2 nst1-1 was generated by crossing zfp2-2 with nst1-1.

Accession numbers
Sequence information are identified in The Arabidopsis Information Resource database (www.arabidopsis.org), under accession

numbers: ZFP2 (AT5G57520); NST1 (AT2G46770); MYB63 (AT1G79180); SND2 (AT1G79180); LAC17 (AT5G60020); IRX9

(AT2G37090); IRX15 (AT2G37090); LAC12 (AT5G05390); PRX52 (AT5G05340); IPP2 (AT3G02780); ACTIN2 (AT3G18780); ZFP1

(AT1G80730); ZFP4 (AT1G66140); ZFP7 (AT1G24625); AT5G10970; ZFP3 (AT5G25160); AT5G01860; KNU (AT5G14010); LATE

(AT5G48890); GIS (AT3G58070); ZFP8 (AT2G41940); GIS2 (AT5G06650); ZFP5 (AT1G10480); GIS3 (AT1G68360); ZFP6

(AT1G67030); AT5G05120; TAC1 (AT3G09290); RBE (AT5G06070); SUP (AT3G23130); ZP1 (AT4G17810); ZFP10 (AT2G37740);

ZFP11 (AT2G42410); JAG (AT1G68480); AT5G54360; AT5G27880, as well as in Ensembl Plants (https://plants.ensembl.org/

index.html), PANTHER (https://pantherdb.org/) and PLAZA database (https://bioinformatics.psb.ugent.be/plaza/versions/plaza_

v5_dicots/) under accession numbers: BnZFP2 (CDY11864); CsZFP2 (Csa11g091100.1); GmZFP2 (KRH02887); ZmZFP2

(Zm00001eb320440); OsZFP2 (Os08g0555700).

METHOD DETAILS

Plasmid construction
For the generation of transgenic GUS line, 1.5 kb promoter sequence upstream of the start codon ofZFP2 and 2 kb promoter sequence

upstream of the start codon ofNST1was amplified from ArabidopsisWTgenomic DNA (gDNA) and introduced into pENTR4 entry vec-

tor, and then subcloned into pGWB3 vector using the LR reaction kit (Life Technologies). Entry construct of ZFP2 was obtained from

ABRC. Truncated variants and site-directedmutants of ZFP2 [ZFP21-143, ZFP228-143, ZFP2L144A/L146A/L148A/L150A (ZFP2mEAR3)], aswell

as ZFP2-VP16 was amplified through PCR and subcloned into entry vector. ZFP2L9A/L11A/L13A/L21A/L23A/L25A/L27A/L144A/L146A/L148A/L150A

(ZFP2 mEAR1-3) and ZFP2L67H/G69V, were synthesized to pTwist ENTR vector by Twist Bioscience to achieve entry constructs.

The entry constructs of ZFP2 and variants were introduced into pEarleyGate binary vectors through LR reactions. 2 kb promoter se-

quences upstream of the start codon of NST1, MYB63 and SND2 were amplified using Arabidopsis WT gDNA and subcloned into

pGreenII 0800-LUC vector.84 For protein expression, full-length coding sequence of ZFP2 was introduced into pNIC-GST vector (Pro-

tein Production Platform, Nanyang Technological University). For the construct of proZFP2:FLAG-ZFP2-YFP, the 1.5 kb promoter

sequence upstream of ZFP2 start codon was amplified by PCR. The amplified ZFP2 promoter sequence was fused with FLAG,

ZFP2 andYFP sequences and introduced into pENTR4 vector, and subsequently subcloned into pEarleyGate100 through LR reactions.

Primers used in the plasmid construction in this study are provided in Table S1.

Bioinformatic analysis
MEGA X software75was used for the construction of a phylogenetic tree through the neighbor-joining method with bootstrap values

set at 1000 replicates. Domains predictions were conducted by Simple Modular Architecture Research Tool (SMART).76 Protein

sequence alignment was analyzed by CLUSTAL W program.77

Gene expression analysis (RNA Extraction, Semi-quantitative RT-PCR, and qRT-PCR)
Plant materials were harvested and immediately frozen in liquid nitrogen and stored at -80�C freezer until use for RNA extraction.

Total RNA was extracted using the Monarch Total RNA Miniprep Kit (New England Biolabs) according to the supplier’s instructions.

First-strand cDNA was synthesized using the LunaScript RT SuperMix Kit (New England Biolabs). Semi-quantitative reverse tran-

scription-PCR (RT-PCR) was performed using GoTaq Green 2XMaster Mix (Promega). ACTIN2 (ACT2) gene was used as an internal

control, with following gene-specific primers [forward (FW), 50-GCTCCCAGGGCTGTTTTTCCCA-30, and reverse (RV), 50-CCC
GCTCTGCTGTTGTGGTGA-30]. Primers for ZFP2 (FW, 50- CTACCAGCCAAACACATCCCT-30, and RV, 50-CGCGTCGACTTAGA

GCCTTAAGGATAA-30). Quantitative real-time PCR (qRT-PCR) was conducted using Luna Universal qPCRMasterMix (New England

Biolabs) according to the supplier’s instructions. IPP2 gene was used as an internal control to normalize the gene expression. The

primers used for qRT-PCR are provided in Table S2.

RNA-sequencing (RNA-seq) analysis
Total RNA extracted from pooled Arabidopsis siliques 12 days after pollination (DAP) were used for the assay, with 3 biological rep-

licates each for WT and zfp2-2. Sample RNA concentration, integrity, and purity were evaluated using Nanodrop, agarose electro-

phoresis, and Agilent 2100 Bioanalyzer. For each sample, RNA-seq libraries were generated using NEBNext Ultra II Directional RNA
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Library Prep Kit for Illumina and sequenced with Illumina Novaseq-6000 using paired-end sequencing with read lengths of 150 base

pairs at sequencing depths of�2million reads per sample. For expression quantification and in silico quality control of RNA-seq data,

27,445 coding sequences from primary transcripts of the A. thaliana nuclear genome85 downloaded from The Arabidopsis Informa-

tion Resource used as read pseudoalignment references using Kallisto,86 in order to estimate the gene expression. TPM (transcript

per million)-normalized abundance values of genes calculated from Kallisto were mean-centered, and standardized to unit variance

within samples, and used as features for Principal component analysis (PCA) to visualize global transcriptome similarity between

samples. For differential gene expression analysis and gene-ontology enrichment analysis, un-normalized gene counts of samples

estimated by Kallisto were used to detect gene differential expression in zfp2-2 siliques using the R package DESeq2,78 with WT

samples designated as control. To identify differentially expressed genes (DEGs), genes with a Benjamini-Hochberg87 corrected

p-value of % 0.05 from DEseq2’s Wald tests, and a Log2FC of R 1 or % -1 were considered to be significantly upregulated and

downregulated DEGs respectively. Functional annotations of Arabidopsis thaliana genes in the form of biological process (BP)

Gene-ontology (GO) terms88 were imported from the R package ‘org.At.tair.db’ (https://bioconductor.org/packages/release/data/

annotation/html/org.At.tair.db.html). Using hypergeometric tests89 onboard the R package ClusterProfiler,90 BP GO terms

that were statistically overrepresented (enriched) in upregulated DEGs were identified using a BH corrected p-value threshold of

% 0.01. The list of enriched terms was simplified by removing terms that had more than 70% overlap with higher ranked terms.

Histochemical analysis of GUS activity
Histochemical analysis of b-glucuronidase (GUS) reporter activity was conducted according to amethod previously described.91 Ho-

mozygous transgenic plants of proZFP2:GUSwere used for this assay. Developing siliques were harvested and incubated in 1X PBS

buffer containing 1 mM 5-bromo-4-chloroindoyl-b-D-glucuronide (X-Gluc), 10 mM EDTA and 0.1% Triton X-100 overnight at 37 oC.

To examine GUS activity in the funiculus, the silique valves were removed. Tissues were cleared in acetic acid:ethanol (3:1) solution

overnight and then stored in 70% ethanol the next day. Images were taken under a Leica stereomicroscope.

Measurement of silique length, seed weight, seed size and number of seeds per silique
Arabidopsis seed weight and size were measured according to a protocol described previously,62 with slight changes. A sample size

of 100 and 120mature seeds (dried for at least aweek after harvesting) were used respectively. For silique length, a sample size of 28–

33 siliques at 7 DAP were harvested. Images were captured using an Epson Perfection V600 Photo scanner. ImageJ was used to

measure length of siliques and seeds, as well as width, area, and perimeter of seeds. As for seeds per silique quantification, mature

and intact siliques (around stage 1849) were harvested to count the number of seeds per silique.

Transient expression in N. benthamiana and confocal microscopy
Agrobacterium-mediated transient expression in N. benthamiana and confocal microscopy imaging in N. benthamiana leaves

were performed as previously described60,62 with slight modifications. Agrobacterium tumefaciens cells were resuspended in

MMA medium [10 mM MES, pH 5.6, 10 mM MgCl2, 100 mM acetosyringone] to an OD600 of 1.2. The cells were incubated for

3–4 h at room temperature and adjusted to an OD600 0.2, before infiltrating into the leaves of N. benthamiana. The plasmid

pEAQ HT producing P19 was co-infiltrated with the constructs. Healthy leaves of N. benthamiana were infiltrated with

A. tumefaciens suspensions via a 1 mL blunt-end syringe. After agroinfiltration, N. benthamiana plants were placed in a growth

chamber for 2–3 days. To investigate the subcellular localization of ZFP2, the N. Benthamiana leaf epidermal cells transiently

expressing YFP-ZFP2 were observed under Zeiss LSM 980 confocal laser scanning microscope (CLSM) equipped with a Zeiss

Alpha Plan Apochromat 63x, NA 1.40 oil objective. The YFP/RFP signal were excited by argon lasers at 509 nm/561 nm and

collected at 505–570 nm/570–650 nm, respectively. The same microscope set up on recording YFP was applied on imaging the

ZFP2-YFP in the siliques of transgenic zfp2-2 (proZFP2:FLAG-ZFP2-YFP in zfp2-2), of which the valves were peeled off to expose

the developing seeds and funiculus. Z-stack image with 0.4 mm step size was applied to scan the whole funiculus. The final image

was maximum projected to present the YFP signal.

Histological staining for detection of cell wall components
Siliques were harvested in late stage 17,49 11–12 DAP, when elongation and lignification were complete but before turning yellow.

Siliques were stored in 70% ethanol at -20�C until further use. For imaging, siliques were cleared overnight in ClearSee (10% xylitol,

15% sodium deoxycholate, 25% urea in H2O). Cleared siliques were stained with basic fuchsin (0.001% in ClearSee) to label lignin

and calcofluor white (Fluorescent Brightener 28, ICN Biomed; 0.01% in ClearSee) to label cellulose according to Ursache et al.92

Valves and septum/replum, which generally separated during the clearing and staining procedure, were mounted between glass

slide and cover slip in ClearSee, using a thin layer of vacuum grease around the sample to prevent crushing the tissue. Silique

cross-sections of 50 mm thickness were cut with a Leica VT1000 S Vibrating blade microtome and stained/mounted as described

above. Imaging was performed using a Leica SP-5X inverted confocal laser scanning microscope, equipped with a 63x water objec-

tive (NA 1.2). Calcofluor white fluorescence was observed using 405 nm excitation and emission between 425 and 475 nm. Basic

Fuchsin fluorescence was observed at 561 nm excitation and emission between 570 and 625 nm. Images were acquired with voxel

dimensions of 240 3 240 3 250 nm (x3 y3 z). Images were visualized and analyzed in Fiji.

Wiesner staining of ethanol-cleared 11–12 DAP siliques was performed as previously described,93 with slight modifications. Valves

were removed from the septum with tweezers, the septum was placed on a glass slide and mounted in Wiesner reagent (1%
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phloroglucinol in ethanol:12 M HCl:MilliQ, 1:1:1). Images were acquired between 2 and 15 min after staining using a Keyence VHX-

7000 with focus stacking.

Quantification of funiculus morphology
The density of cortex cells forming ectopic SCWswas counted manually in 11–12 DAP old funiculi, dividing the number of non-xylem

cells with a lignified SCW by the observed length of the funiculus. To measure cell lengths in funiculi, the calcofluor channel was

segmented in three dimensions with PlantSeg (v 1.6.0; GASP segmentation, ‘generic_confocal_3D_unet’).79 Segmented cells

touching the border of the 3D stack or outside the biologically plausible range of around 300–2000 mm3were filtered out. 3D ellipsoids

were fitted to the segmented cells and the radius of the long axis was measured using the MorpholoibJ ImageJ plugin.80 Segmented

cells were visualized and colored according to long axis diameter in Napari.81

Dual-luciferase (dual-LUC) assay
Dual-LUC assays in N. benthamiana leaves were conducted as described previously.60,94 The dual-LUC assay was performed using

Dual-Luciferase Reporter 1000 Assay System (Promega). After agroinfiltration,N. benthamiana plants were placed in a growth cham-

ber for 3 days. To harvest the samples for the assay, three leaf discs (5–6 mm in diameter) were excised and ground in liquid nitrogen

(to fine powder) and homogenized in 100 mL Passive Lysis buffer. Subsequently, 40 mL Luciferase Assay Buffer was added to 5 mL of

the crude extract, and the firefly LUC activity wasmeasured by a cell imaging multimode plate reader (BioTek Cytation 5). 40 mL Stop

and Glow Buffer was then added and the Renilla (REN) LUC activity was measured. To quantify the relative luciferase activity, the

firefly LUC activity was normalized against the REN LUC activity.

Fatty acid analysis
Lipid analysis in Arabidopsismature seeds was conducted as previously described.83 For lipid analysis in developing seeds, 15 har-

vestedArabidopsis developing seedswere stored in a glass tubewith 1mL freshly prepared sulfuric acid inmethanol [5% (v/v)], 25 mL

of BHT solution [0.2% (w/v) butylated hydroxy toluene in methanol], 25 mg of triheptadecanoin (as internal standard) and 300 mL of

toluene were stored at 4 oC, until all developing seeds from different DAP were harvested. Subsequent assays of direct methylation,

extraction of fatty acid methyl esters, and analysis by gas chromatography was conducted as previous described.83

Glucosinolate quantification
For glucosinolate analysis, three types of samples were prepared: 1) 10 seeds from individual, mature, intact siliques from fully sen-

esced plants, 2) the non-seed silique tissues (valves, septa, replum) from the same individual siliques and 3) 5 mg of seeds, pooled

from groups of four plants. Samples were collected in 85% (v/v) methanol containing p-hydroxybenzyl glucosinolate (pOHB, Extra-

synthese Cat. No. 2511 S) internal standard and homogenized in a beadmill (Retsch, 3mmbearing beads, 30s at 30 Hz). For analysis

of glucosinolates as desulfo-glucosinolates, chromatography was performed on an Advance UHPLC system (Bruker). Separation

was achieved on a Kinetex 1.7u XB-C18 column (100 x 2.1 mm, 1.7 mm, 100 Å, Phenomenex). Formic acid [0.05% (v/v)] in water

and acetonitrile [supplied with 0.05% (v/v) formic acid] were employed as mobile phases A and B respectively. The elution profile

was: 0-0.5 min, 2% B; 0.5-1.2 min, 2-30% B; 1.2-2.0 min 30-100% B, 2.0-2.5 min 100% B, 2.5-2.6 min, 100-2% B and 2.6-4 min

2% B. The mobile phase flow rate was 400 mL min-1. The column temperature was maintained at 40�C. The liquid chromatography

was coupled to an EVOQ Elite TripleQuad mass spectrometer (Bruker, Bremen, Germany) equipped with an electrospray ion source

(ESI) operated in positive ionization mode. The instrument parameters were optimized by infusion experiments with pure standards.

The ion spray voltage was maintained at +3500 V. Cone temperature was set to 300�C and cone gas to 20 psi. Heated probe tem-

perature was set to 400�C and probe gas flow to 40 psi. Nebulizing gas was set to 60 psi and collision gas to 1.5 mTorr. Nitrogen was

used as probe and nebulizing gas and argon as collision gas. Active exhaust was constantly on. Multiple reaction monitoring (MRM)

was used to monitor analyte precursor ion / product ion transitions. Detailed values for mass transitions can be found.95 Both Q1

and Q3 quadrupoles were maintained at unit resolution. Bruker MS Workstation software (Version 8.2.1, Bruker) was used for data

acquisition and processing. Linearity in ionization efficiencieswas verified by analyzing dilution series. p-hydroxybenzyl glucosinolate

was used as internal standard.

Total lignin quantification
The lignin content was determined by the acetyl-bromide method, based on Barnes and Anderson’s protocol with slight modifica-

tions.96 The stems of plants grown to senescence were finely ground and 5–8 mg of each sample was weighed and placed in 12 mL

glass screw-cap vials. The exact mass was recorded, and the five biological replicates were processed in technical triplicates. 1 mL

of 25% (v/v) acetyl bromide in glacial acetic acid was added to each vial, with one empty vial serving as a blank. The vials were gently

swirled and placed in a 70�C water bath. The vials were gently swirled three times during the 70 min incubation. The samples were

then transferred to ice and 5 ml of glacial acetic acid was added to each sample. The vials were shaken thoroughly and left until any

residues had precipitated at the bottom of the vials, a minimum of three hours up to overnight. Once settled, 30 mL of each sample

was transferred to a UV-transparent 96-well plate. To each well, 40 mL of 2 M sodium hydroxide and 30 mL of freshly prepared

0.5 M hydroxylamine hydrochloride were added. The samples were mixed thoroughly by pipetting, and absorbance was measured

immediately at 280 nm.
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ChIP assay
ChIP assay was performed according to a protocol described previously97 with modifications. In brief, 5 to 14 DAP siliques were

ground to fine powder in liquid nitrogen and fixed with 1% (w/v) formaldehyde for 10 min under vacuum, followed by incubation

at 4�C on a sample rotator for another 20 min. The crosslinker was quenched by adding glycine to the final concentration of

0.15M. The chromatin was extracted by adding four volumes of nucleus fractionation buffer (15 mMPIPES pH 6.8, 250mMSucrose,

5 mM MgCl2, 60 mM KCl, 15 mM NaCl, 1 mM CaCl2, 0.9% (v/v) Triton X-100, 1 mM PMSF), followed by filtration through Miracloth

and centrifuge. After preclearance with protein G magnetic beads (Thermo Fisher) and salmon sperm DNA, the sonicated chromatin

was incubated overnight with or without anti-flag antibody (Proteintech). The purified protein-DNA complexes were recovered. DNA

fragments were further purified by Monarch PCR & DNA cleanup kit (New England Biolabs). The primers used for ChIP-qPCR are

provided in Table S3.

Recombinant protein production, purification, and EMSA
Protein expression vectors were transformed into E. coli [BL21 (DE3)] and selected on antibiotic-selective media. Protein induction,

extraction and purification were conducted according to the protocols as previously described,98 with slight modification. Cell

cultures were induced at 22 oC for 2 hwith 1mM isopropyl-b-D-thiogalactoside (IPTG). EMSAwas performed according to a protocol

described previously,44 with slight modification. The 5’ end biotin-labeled (hot) and -unlabeled (cold) probes for the proNST1 frag-

ments containing (A/T)(G/C)TT sites (probe P6-1: 5’-TAGCAAAACTATTTAAAACTAGACGCCAAAAAAAATTGAA-3’; probe P6-2:

5’-AACAAGAGAATAATAATCATTAATAATTGACAAGTGAAAT-3’; probe P6-3: 5’-GGTTATATTTTAATTTTCAAACTAAATAATGAATA

CAAAT-3’; probe P6-4: 5’-TTGAATTTTAATAATTAAGAAAAACAAAAAAAGGTGTACA-3’) were used. The standard binding reaction

(20 mL) contained 10mMTris (pH 7.5), 50mMKCl, 1 mMdithiothreitol, 2.5% (v/v) glycerol, 0.05% (v/v) IGEPAL CA-630, 5mMMgCl2,

0.5 mM EDTA, 2.5 ng/mL poly(dI,dC), 50 fmol biotin-labeled probe, and 1 mg of purified GST-His-ZFP2. The reaction mixture was

incubated at room temperature for 30 min. The DNA-protein complexes were separated on 10% (w/v) native polyacrylamide gels

and subsequently transferred onto a nylonmembrane. The band shifts were detected using chemiluminescent nucleic acid detection

module (Thermo Scientific).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significancewas determined using one-way ANOVA or one-way ANOVA followed by Tukey-HSD test or Kruskal-Wallis test

or Kruskal-Wallis test followed by Dunn’s test or Welch’s t-test, as described in the figure legends.
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